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The Performance Surface in Filtered z(n)
Nonlinear Mean-Square Estimation +
x(n) . d(n) + e(n)
Marcio H. Costa, José Carlos M. Bermudez, and Neil J. Bershad w A +

Abstract—This brief investigates the properties of the performance sur-
face for the problem of linearly constrained nonlinear mean-square esti- W S 2(ye)
mation of a random sequence. The problem studied has direct applica- S
tion to the study of active noise control systems when the transducers are y(n) ygs(n) Yg (m)
driven into nonlinear behavior. A deterministic expression is derived for the
mean-square error (MSE) surface as a function of the nonlinearity param-
eter for Gaussian inputs. It is demonstrated that the surface is unimodal,
and expressions are determined for the optimum weight vector and for the

Fig. 1. Constrained mean-square estimation problem.

minimum MSE. Fig. 1. The signak(n) represents the acoustic noise which is directly
Index Terms—Adaptive filters, adaptive signal processing, active noise measurable. This signal(n) propagates through an unknown linear
control (ANC), nonlinear systems, estimation theory. acoustic medium, which is modeled By°. The output of the acoustic

medium is generated via the linear modeb) = S5 ' wix(n — k),
with order N determineda priori,! and is obscured by the additive
noisez(n). The systeni¥ is the linear estimator, whose parameters
Mean-square estimation plays a crucial role in many problems wifust be determined to minimize the mean-square value of the error
adaptive control and adaptive signal processing [1], [2]. The optimaln).2 The systen® is a linear filter which models the linear response
design of adaptive estimation systems requires detailed knowledifethe amplifier used to drive the acoustic transducer (usually a
about the theoretical problem and about the adaptive algoritrspeaker). It is known athe secondary patin the ANC literature.
performance in solving that problem. Such knowledge is obtainétd response can be estimated using online or offline techniques [9].
through analysis of the system behavior and derivation of analyticehis filtering operation represents a set of constraints on the response
models that can accurately predict the adaptive algorithm behavairthe linear system comprised of a cascade connectidfi @nd.S.
when applied to that system. The nonlinearityy(-) models the amplifier or the transducer saturation
The study of the adaptive algorithm behavior leads to the predieffects. Thus, in the system of Fig. d(n) + z(n) is estimated by a
tion of its transient and steady-state behaviors in seeking a stationagylinear function of the reference signdh) [11, Sec. 7-5].
point of the performance surface. The steady-state results must then b&lthough system nonlinearities are quite common, very little has
compared to the stationary points of the performance surface to detezen reported in the literature on their effects on the MSE surface. Are-
mine the efficiency of the algorithm. Thus, knowledge of performanagent paper [8] has studied the statistical behavior of the filtered-X least-
surface properties (such as its minimum and the uniqueness of saean-square (FXLMS) adaptive filter when used to solve the problem
a minimum) is required to determine the adaptive algorithm’s perfair Fig. 1. This analysis determined analytical models for the mean
mance, as well as to compare performances of different algorithms. Weight and the MSE behaviors. However, the results in [8] alone do not
most employed performance surface is the mean-square error (MSidvide all the necessary design information if the MSE performance
In general, the MSE cost function has a second-order dependencesoriace properties are unknown. The knowledge of such properties al-
the adaptive filter coefficients, has a unique global minimum, and liews the designer to determine the algorithm behavior for a given de-
mathematically tractable [1]. gree of nonlinearity, as compared to the optimum. In addition, the MSE
Several adaptive modeling and control systems present satwsarface properties are necessary for a meaningful performance compar-
tion-type nonlinearities in the adaptive filter path [3]-[6]. Suclison among different adaptive algorithms.
nonlinearities can severely affect the MSE surface properties and th&his brief determines the MSE surface properties for systems de-
ability of the adaptive algorithm to minimize the MSE. Several workscribed by Fig. 1 when the inputr) is Gaussian. A deterministic ex-
[3], [7], [8] have studied the behavior of adaptive filters in modelingression is derived for the MSE surface as a function of the nonlinearity
and control applications with such nonlinearities. Active noise contrphrameter. The surface is shown to remain unimodal for any degree of
(ANC) is one important example. ANC systems are described ionlinearity. The optimum weight vector and the minimum MSE are
detail in [9]. The frequently used models for the nonlinear adaptivetermined.
path define the nonlinear mean square estimation problem depicted in

. INTRODUCTION

Il. ANALYSIS OF THE MSE SURFACE
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input data vectory(n) is the output ofi¥, y.(n) is the output ofS, The last expectation can be obtained from [14, eq. (40)hfpr=
g(ys) is the saturation nonlinearity,, (n) is the nonlinearity output b,(n) = 1, H = W andY (rn) = X (n):*

(canceling signal) and(n) is the estimation error. The signa(n) M—1 W R.W

is assumed statistically stationary, zero-mean Gaussian with positivel {92 Z s;WhX (n—i)]} =0 arcsin <~7b) . (M
definite correlation matrix. The Gaussian assumption leads to better i=0 WTR W +o?

mathematical tractability. Moreover, Gaussian models are usuallyUsing (4) and (7) in (3) yields an analytical expression for the MSE
appropriate to deal with stochastic processes generated by physstaface

phenomena. The noise(n) is stationary, white, zero-mean, with W) = E{e*(n)} = o2 + W RyW®
variances? and statistically independent of any other signal. Vectors 9 T
W and W are assumed to have the same size to simplify matrix - . = W* R, W
notations. The saturation nonlinearity is modeled by the scaled error vV SWIR W +1

function

s . < WY R, W >
4+ o~ arcsin .

Vs 52 WTR,W + o2 ®)
9(ys) = /U e 2etdz @ Equation (8) reduces to the MSE expression for the linear case as
0% — oo [15].
Note that lim [¢(ys)] = ys and lim [g(ys)] = o/7/2 Sgn(y.).

of—oo o2—=0" ) . _B. Stationary Points
Hence, by changing”, g(y.) can be varied between a linear device R
and a hard limiter. The effects of very large nonlinearities€ 0)can  In the following, it is assumed that.. is positive definite, a rea-
be studied by scaling(y.) by a constant such a$/s, where4 € sonable assumption for most practical systems$ Rifferentiating (8)
R, . g(y,) models the saturation-type nonlinearity, which is of greatith respect td¥’, equating the result to zero and denotligas the

practical interest. finite values of¥ that satisfy the resulting equation, it can be easily
shown that
A. MSE Performance Surface ) (1 + ﬁWTﬁ’,ssW) o
) o W= R R W°.  (9)
The error signal in Fig. 1 is given by (wrr W+1)% ss Als
, « , LWoTRTW 4 o2~ T )
e(n) =d(n) + z(n) — yy(n) 72 ~ EXETR L

W X ()4 2(n) — g [le WX (n — i)] @ 'Iir)us,ﬁ’ = cRZ'R,W?, wheree is a real scalar for any finité”* and

W. Note that, contrary to the nonfiltered case [16],is not a scaled
version ofi¥“. In general, the matri)éé,,_s1 R, modifies the direction of
W<, as well as its magnitude. Substitutindgz;;! R, ¥ for T in (9)
E{e? ('n)}:I/{"OTE{X(n)XT(n)}1/1/'°+2W°T E{:(n)X(n)}  and defining

1=0

Squaringe(n) in (2) and taking the expected value yields

= # = Lwel BRI R 10
_2'”/'0 E{g Z SI‘JTTAY(H—Z)] 1\7(“)} / — 0__2 g s 1lgs s V¥ ( )
=0
Mt leads to
, T < . o 242 o
+E{22(n)}—2E{z(n)g Zs,;l/T/T)g(n—z)]} CRTRWO = (613—‘1'1)1 R RO 11)
=0 ef2 + (c2B8241)2
, M—1 . (2(:2,92-&-1)%
+E{fl Z W5 X(n —77)” . 3) Equating the scalar multipliers on both sides yields
1=0

232
CrAL (12)

Four expectations in (3) are easily evaluated using the statistical I Y
2253

properties ofe(n) andz(n): E{X(n)X*(n)} = Ro, F{z(n)X (n)}
=0, E{z*(n)} = o and E{z(n)g[>M ' s, WI X (n — )]} = 0, Equation (12) shows thamust be positive. Solving (12) feryields

=0
where the notatioR;_; = E{X(n — i)X " (n — j)} is used. Thus, the four solutions
R, is the autocorrelation matrix of (n). 1 1
The third expectation is of the fordi{g(y1)Y>}, wherey, and the cl23,4 = F4/1 - PRE FVgm Tl (13)

components of vectoY, are zero-mean Gaussian variates. This ex- . . .
pectation can be determined using the Modified Price theorem [12].TWO Of these solutions are complex and one is real negative. Thus,
Following the same steps in [13, App.A] with= 0, ¢ = 1/0 and the only solution satisfying € R is

g, = o, it can be shown that 1 1
M—1 c=4/1- 2;?4_ 15 +1 (14)
E<g Z sz‘W'TX(n—i) X(n)p= ! BYw 4 d '
v LT P 11 s and thus
=0 (’_—211 RSS‘T/ +1
< 1 [ 1 S
wheré W= \/1 BT + i3t +1-RR.W (15)
R = %_:1 %—5 o5 R ) corresponds to the only finite point for which¢(W)/0W = 0.
A Appendix A presents a mathematical proof that the Hesefgg(1V)]
A]/,__1 - is positive definite atV’ = W. Thus, (15) corresponds to a minimum
RS = Z siR_;. (6) of §(W)
i=0

“Note thatb = 02 H™ H in [14] would beH ™ Ry H for z(n) nonwhite
3Note thatR” = Y M1 s, R,. 5R.. is the autocorrelation matrix af(n) filtered by the filterS [15].
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Setting?V = W in (8) and using (15) yields an expression for the AssumingR, is positive definite, (18) can be written as
minimum MSE

2001\ _ P b a3 s ool 5T 53| 53
. VEW)=R&qal+—R..>RW°W? R, R, yRZ  (19)
5 T ° 1 . et 3° (o
Emin = 0. + W RW® + {—7 arcsin <772 2’ > s
2 2f?+1 wh_ereRsﬁ is symmetric and nonsingular. Thus, (19) is of the form
2¢ Wl =p = 1= C"' MC whereC is nonsingular. The following result is now used [17,
| W R R RW (16) 25410 A itive definit d'i ingular, ther0' T AC' i
/232 + 1 p. ]: is positive definite and” is nonsingular, ther” 'is
also positive definiteThus, if M is positive definite, so is the Hessian.
where 32 andc are given by (10) and (14), respectively. Again, as The eigenvectors of

5% — 0 (toward the linear case), (16) reduces to the linear case op- . P S AP POy |
timum SOIUtiOnf lnli'n_ — O—Z + ‘,/[roT Ro we — ‘/[roT Eg’ﬁ;ql .ﬁs ‘/[ro’ M =al + PR” R WW Rs R (20)
in agreement with [15, eq. (11)]. are R=.'?R,W° and N — 1 vectors orthogonal to it. Thus{ has
N-1 eigjenvalues equal to and one eigenvalue given by= a +
ll. CONCLUSION (b/o? )W RIR;}RW° = a+ b3*. M will be positive definite if

%Ilrthese eigenvalues are positive.

This brief has derived the properties of the performance surface Taking the expressions ofandb from (18) and using (12) yields
the problem of linearly constrained nonlinear mean-square estimatig . . - . !
at{‘l]er simple algebraic manipulations

of a random Gaussian sequence. The problem studied has direct appli s )
cation to the study of ANC systems when the transducers are driven y=a 405 = 4c" B +4c737 + 2

into a nonlinear behavior. A deterministic expression was derived for (282 +1)2(2e282 + 1)3

the MSE surface as a function of the system’s degree of nonlinearity,Ji\ich completes the proof that the Hessian is positive definite for any
was demonstrated that the MSE surface is unimodal, and expressighs, 32

were determined for the optimum weight vector and for the minimum
MSE. The results in this brief contribute to the performance analysis
of adaptive algorithms applied to nonlinear filtering problems, such as
ANC. [1] S.Haykin,Adaptive Filter Theory3rded. Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.
[2] P. Darlington, “Performance surfaces of minimum effort estimators and
APPENDIX A controllers,”|IEEE Trans. Signal Processingol. 43, pp. 536-539, Feb.
1995.
0 x [3] P. Darlington and G. Xu, “Equivalent transfer functions of minimum
PROOF THAT V=£(W) IS POSITIVE DEFINITE output variance mean-square estimatot€EE Trans. Signal Pro-
cessingvol. 39, pp. 1674-1677, July 1991.

>0 (21)
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At W = ¢ R, R,W* and using (10) and (14), (17) becomes
20822237 + 1)7 + 2(232 4+ 1)2
(2¢282 + l)%(c?ﬁz + 1)%
(=26%3% + 40) (2237 + 1) % — (126* 3% + 8¢%)(* B> + 1)2
(2282 +1)2 (282 + 1)3

VW) = [
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