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The Performance Surface in Filtered
Nonlinear Mean-Square Estimation

Márcio H. Costa, José Carlos M. Bermudez, and Neil J. Bershad

Abstract—This brief investigates the properties of the performance sur-
face for the problem of linearly constrained nonlinear mean-square esti-
mation of a random sequence. The problem studied has direct applica-
tion to the study of active noise control systems when the transducers are
driven into nonlinear behavior. A deterministic expression is derived for the
mean-square error (MSE) surface as a function of the nonlinearity param-
eter for Gaussian inputs. It is demonstrated that the surface is unimodal,
and expressions are determined for the optimum weight vector and for the
minimum MSE.

Index Terms—Adaptive filters, adaptive signal processing, active noise
control (ANC), nonlinear systems, estimation theory.

I. INTRODUCTION

Mean-square estimation plays a crucial role in many problems of
adaptive control and adaptive signal processing [1], [2]. The optimal
design of adaptive estimation systems requires detailed knowledge
about the theoretical problem and about the adaptive algorithm
performance in solving that problem. Such knowledge is obtained
through analysis of the system behavior and derivation of analytical
models that can accurately predict the adaptive algorithm behavior
when applied to that system.

The study of the adaptive algorithm behavior leads to the predic-
tion of its transient and steady-state behaviors in seeking a stationary
point of the performance surface. The steady-state results must then be
compared to the stationary points of the performance surface to deter-
mine the efficiency of the algorithm. Thus, knowledge of performance
surface properties (such as its minimum and the uniqueness of such
a minimum) is required to determine the adaptive algorithm’s perfor-
mance, as well as to compare performances of different algorithms. The
most employed performance surface is the mean-square error (MSE).
In general, the MSE cost function has a second-order dependence on
the adaptive filter coefficients, has a unique global minimum, and is
mathematically tractable [1].

Several adaptive modeling and control systems present satura-
tion-type nonlinearities in the adaptive filter path [3]–[6]. Such
nonlinearities can severely affect the MSE surface properties and the
ability of the adaptive algorithm to minimize the MSE. Several works
[3], [7], [8] have studied the behavior of adaptive filters in modeling
and control applications with such nonlinearities. Active noise control
(ANC) is one important example. ANC systems are described in
detail in [9]. The frequently used models for the nonlinear adaptive
path define the nonlinear mean square estimation problem depicted in
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Fig. 1. Constrained mean-square estimation problem.

Fig. 1. The signalx(n) represents the acoustic noise which is directly
measurable. This signalx(n) propagates through an unknown linear
acoustic medium, which is modeled byW o. The output of the acoustic
medium is generated via the linear modeld(n) = N�1

k=0
wokx(n�k),

with orderN determineda priori,1 and is obscured by the additive
noisez(n). The systemW is the linear estimator, whose parameters
must be determined to minimize the mean-square value of the error
e(n).2 The systemS is a linear filter which models the linear response
of the amplifier used to drive the acoustic transducer (usually a
speaker). It is known asthe secondary pathin the ANC literature.
Its response can be estimated using online or offline techniques [9].
This filtering operation represents a set of constraints on the response
of the linear system comprised of a cascade connection ofW andS.
The nonlinearityg(�) models the amplifier or the transducer saturation
effects. Thus, in the system of Fig. 1,d(n) + z(n) is estimated by a
nonlinear function of the reference signalx(n) [11, Sec. 7-5].

Although system nonlinearities are quite common, very little has
been reported in the literature on their effects on the MSE surface. A re-
cent paper [8] has studied the statistical behavior of the filtered-X least-
mean-square (FXLMS) adaptive filter when used to solve the problem
in Fig. 1. This analysis determined analytical models for the mean
weight and the MSE behaviors. However, the results in [8] alone do not
provide all the necessary design information if the MSE performance
surface properties are unknown. The knowledge of such properties al-
lows the designer to determine the algorithm behavior for a given de-
gree of nonlinearity, as compared to the optimum. In addition, the MSE
surface properties are necessary for a meaningful performance compar-
ison among different adaptive algorithms.

This brief determines the MSE surface properties for systems de-
scribed by Fig. 1 when the inputx(n) is Gaussian. A deterministic ex-
pression is derived for the MSE surface as a function of the nonlinearity
parameter. The surface is shown to remain unimodal for any degree of
nonlinearity. The optimum weight vector and the minimum MSE are
determined.

II. A NALYSIS OF THE MSE SURFACE

Fig. 1 corresponds to a nonlinear mean-square estimation
problem [11, Sec. 7-5]. The sequenced(n) is estimated in the
mean square sense by a nonlinear function of the reference signal
x(n). In the following analysis,W o = [wo0 w

o

1 . . . woN�1]
T ,

where wok is the kth sample of the impulse response of the un-
known system,W = [w0 w1 � � � wN�1]

T is the weight vector
of the linear filter to be optimized,S = [s0 s1 � � � sM�1]

T

contains the samples of the secondary path impulse response,
X(n) = [x(n)x(n � 1) � � � x(n � N + 1)]T is the observed

1The model order can be estimated using different techniques [10, Ch. 16].
2In adaptive filtering,W is replaced by a time-varying filterW (n) which is

controlled by an adaptive algorithm [9].
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input data vector,y(n) is the output ofW , ys(n) is the output ofS,
g(ys) is the saturation nonlinearity,yg(n) is the nonlinearity output
(canceling signal) ande(n) is the estimation error. The signalx(n)
is assumed statistically stationary, zero-mean Gaussian with positive
definite correlation matrix. The Gaussian assumption leads to better
mathematical tractability. Moreover, Gaussian models are usually
appropriate to deal with stochastic processes generated by physical
phenomena. The noisez(n) is stationary, white, zero-mean, with
variance�2z and statistically independent of any other signal. Vectors
W o andW are assumed to have the same size to simplify matrix
notations. The saturation nonlinearity is modeled by the scaled error
function

g(ys) =
y

0

e
�

dz: (1)

Note that lim
� !1

[g(ys)] = ys and lim
� !0

[g(ys)] = � �=2 sgn(ys).

Hence, by changing�2, g(ys) can be varied between a linear device
and a hard limiter. The effects of very large nonlinearities (� ! 0) can
be studied by scalingg(ys) by a constant such asA=�, whereA 2
R+. g(ys) models the saturation-type nonlinearity, which is of great
practical interest.

A. MSE Performance Surface

The error signal in Fig. 1 is given by

e(n) = d(n) + z(n)� yg(n)

=W o X(n) + z(n)� g

M�1

i=0

siW
TX(n� i) : (2)

Squaringe(n) in (2) and taking the expected value yields

E e2(n) =W o E X(n)XT (n) W o+2W o Efz(n)X(n)g

�2W o E g

M�1

i=0

siW
TX(n�i) X(n)

+E z2(n) �2E z(n)g

M�1

i=0

siW
TX(n�i)

+E g2
M�1

i=0

siW
TX(n�i) : (3)

Four expectations in (3) are easily evaluated using the statistical
properties ofx(n) andz(n):EfX(n)XT (n)g = R0,Efz(n)X(n)g
= 0, Efz2(n)g = �2z andEfz(n)g[ M�1

i=0 siW
TX(n � i)]g = 0,

where the notationRj�i = EfX(n� i)XT (n � j)g is used. Thus,
R0 is the autocorrelation matrix ofX(n).

The third expectation is of the formEfg(y1)Y2g, wherey1 and the
components of vectorY2 are zero-mean Gaussian variates. This ex-
pectation can be determined using the Modified Price theorem [12].
Following the same steps in [13, App.A] withb = 0, c = 1=� and
�q = �, it can be shown that

E g

M�1

i=0

siW
TX(n�i)X(n) =

1

1
�
WT ~RssW+1

~RT
s W (4)

where3

~Rss =

M�1

j=0

M�1

i=0

sjsiRj�i (5)

~Rs =

M�1

i=0

siR�i: (6)

3Note that ~R = s R .

The last expectation can be obtained from [14, eq. (40)] for�f =
b1(n) = 1, H = W andY (n) = X(n):4

E g2
M�1

i=0

siW
TX(n�i) =�2 arcsin

WT ~RssW

WT ~RssW+�2
: (7)

Using (4) and (7) in (3) yields an analytical expression for the MSE
surface

�(W ) =Efe2(n)g = �2z +W o R0W
o

�
2

1
�
WT ~RssW + 1

W o ~RT
s W

+ �2 arcsin
WT ~RssW

WT ~RssW + �2
: (8)

Equation (8) reduces to the MSE expression for the linear case as
�2 ! 1 [15].

B. Stationary Points

In the following, it is assumed that~Rss is positive definite, a rea-
sonable assumption for most practical systems [1].5 Differentiating (8)
with respect toW , equating the result to zero and denoting~W as the
finite values ofW that satisfy the resulting equation, it can be easily
shown that

~W =
1 + 1

�
~WT ~Rss

~W

1
�
W o ~RT

s
~W +

~W ~R ~W+1

~W ~R ~W+1

~R�1ss ~RsW
o: (9)

Thus, ~W = c ~R�1ss ~RsW
o, wherec is a real scalar for any finiteW o and

~W . Note that, contrary to the nonfiltered case [16],~W is not a scaled
version ofW o. In general, the matrix~R�1ss ~Rs modifies the direction of
W o, as well as its magnitude. Substitutingc ~R�1ss ~RsW

o for ~W in (9)
and defining

�2 =
1

�2
W o ~RT

s
~R�1ss ~RsW

o (10)

leads to

c ~R�1ss ~RsW
o =

(c2�2 + 1)

c�2 + (c � +1)

(2c � +1)

� ~R�1ss ~RsW
o: (11)

Equating the scalar multipliers on both sides yields

c
c2�2 + 1

2c2�2 + 1
= 1: (12)

Equation (12) shows thatcmust be positive. Solving (12) forc yields
the four solutions

c1;2;3;4 = � 1�
1

2�2
�

1

4�4
+ 1: (13)

Two of these solutions are complex and one is real negative. Thus,
the only solution satisfyingc 2 R+ is

c = 1�
1

2�2
+

1

4�4
+ 1 (14)

and thus

~W = 1�
1

2�2
+

1

4�4
+ 1 � ~R�1ss ~RsW

o (15)

corresponds to the only finite point for which@�(W )=@W = 0.
Appendix A presents a mathematical proof that the Hessianr2[�(W )]
is positive definite atW = ~W . Thus, (15) corresponds to a minimum
of �(W ).

4Note thatb = � H H in [14] would beH R H for x(n) nonwhite
5 ~R is the autocorrelation matrix ofx(n) filtered by the filterS [15].
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SettingW = ~W in (8) and using (15) yields an expression for the
minimum MSE

�min = �2z +W o R0W
o +

1

�2
arcsin

c2�2

c2�2 + 1

�

2c

c2�2 + 1
�W o ~RT

s
~R�1ss

~RsW
o (16)

where�2 and c are given by (10) and (14), respectively. Again, as
�2 ! 0 (toward the linear case), (16) reduces to the linear case op-
timum solution� min

linear

= �2z +W o R0W
o
�W o ~RT

s
~R�1ss

~RsW
o,

in agreement with [15, eq. (11)].

III. CONCLUSION

This brief has derived the properties of the performance surface for
the problem of linearly constrained nonlinear mean-square estimation
of a random Gaussian sequence. The problem studied has direct appli-
cation to the study of ANC systems when the transducers are driven
into a nonlinear behavior. A deterministic expression was derived for
the MSE surface as a function of the system’s degree of nonlinearity. It
was demonstrated that the MSE surface is unimodal, and expressions
were determined for the optimum weight vector and for the minimum
MSE. The results in this brief contribute to the performance analysis
of adaptive algorithms applied to nonlinear filtering problems, such as
ANC.

APPENDIX A

PROOFTHAT r2�( ~W ) IS POSITIVE DEFINITE

The Hessian of�(W ) is given by

r
2�(W )=

2

�2 1

�
WT ~RssW+1

� ~RssWW o ~RT
s + ~RsW

oWT ~Rss

+
2

�
W o ~RT

s W

1

�
WT ~RssW+1

+
2

2

�
WT ~RssW+1 1

�
WT ~RssW+1

~Rss

�

6

�
W o ~RT

s W

�2 1

�
WT ~RssW+1

+
12

�
WT ~RssW+8

�2 2

�
WT ~RssW+1 1

�
WT ~RssW+1

2

� ~RssWWT ~Rss: (17)

At ~W = c ~R�1ss
~RsW

o and using (10) and (14), (17) becomes

r
2�( ~W ) =

2c�2(2c2�2 + 1) + 2(c2�2 + 1)

(2c2�2 + 1) (c2�2 + 1)
~Rss

1

�2

+
(�2c3�2 + 4c)(2c2�2 + 1) � (12c4�2 + 8c2)(c2�2 + 1)

(2c2�2 + 1) (c2�2 + 1)

� ~RsW
oW o ~RT

s = a ~Rss +
b

�2
~RsW

oW o ~RT
s : (18)

Assuming~Rss is positive definite, (18) can be written as

r
2�( ~W )= ~Rss aI+

b

�2
~R
�

ss
~RsW

oW o ~RT
s
~R
�

ss
~Rss (19)

where ~R
1=2
ss is symmetric and nonsingular. Thus, (19) is of the form

CTMC whereC is nonsingular. The following result is now used [17,
p. 254]:If A is positive definite andC is nonsingular, thenCTAC is
also positive definite.Thus, ifM is positive definite, so is the Hessian.

The eigenvectors of

M = aI +
b

�2
~R
�

ss
~RsW

oW o ~RT
s
~R
�

ss (20)

are ~R
�1=2
ss

~RsW
o andN � 1 vectors orthogonal to it. Thus,M has

N � 1 eigenvalues equal toa and one eigenvalue given by
 = a +

(b=�2)W o ~RT
s
~R�1ss

~RsW
o = a+ b�2.M will be positive definite if

all these eigenvalues are positive.
Taking the expressions ofa andb from (18) and using (12) yields,

after simple algebraic manipulations


 = a+ b�2 =
4c4�4 + 4c2�2 + 2

(c2�2 + 1)2(2c2�2 + 1)
> 0 (21)

which completes the proof that the Hessian is positive definite for any
finite �2.
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