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Abstract. - The Normalized LMS adaptive algorithm is 
widely used in real life adaptive filtering and control 
applications mainly due to its simplicity and robustness to 
input signal power variations. This last characteristic is a 
consequence of its intrinsic normalization procedure. 
However, in practical applications it is usual the addition of 
a small positive constant to the normalization factor in order 
to avoid divisions by zero or overflow. In this case, the 
adaptive algorithm is named ε-NLMS. This work presents a 
statistical analysis of the ε-NLMS for Gaussian input 
signals. Deterministic recursive equations are obtained for 
the mean weight behavior and mean square error for a large 
number of adaptive coefficients. In addition, a closed 
expression is provided for the steady state misadjustment. 
Monte Carlo simulations show an excellent agreement 
between theoretical predictions and the algorithm’s 
behavior in steady state. During transient, the new model is 
conservative and more accurate than the existing models. 
The developed equations can be used with ε = 0 to predict 
the behavior of the NLMS algorithm. Simulations illustrate 
the better quality of the new NLMS model when compared 
to others already available in the literature. 

Keywords: Adaptive filters, normalized LMS, NLMS, echo 
canceling, analytical modeling. 

Resumo - O algoritmo LMS Normalizado é amplamente 
utilizado em aplicações reais de filtragem e controle 
adaptativos em decorrência de sua simplicidade e robustez a 
variações da potência do sinal de entrada. Esta última 
característica deve-se ao procedimento de normalização 
utilizado. Entretanto, em aplicações práticas é usual a 
adição de uma pequena constante positiva ao fator de 
normalização, de forma a evitar divisões por zero ou 
overflow. Nesse caso o algoritmo passa a se chamar ε-
NLMS. Este trabalho apresenta uma análise estatística do 
algoritmo ε-NLMS para sinais de entrada Gaussianos. 
Equações determinísticas recursivas são obtidas para os 
comportamentos do valor médio dos coeficientes e do erro 
médio quadrático para um elevado número de coeficientes 
no filtro adaptativo. É também determinada uma expressão 
fechada para o desajuste em regime permanente. 
Simulações Monte Carlo mostram uma excelente 
concordância entre as predições teóricas e o comportamento 
real do algoritmo em regime permanente. No regime 
transitório o modelo é conservativo e mais preciso do que 
os modelos existentes na literatura. As equações 
desenvolvidas podem ser utilizadas com ε = 0 para prever o 
comportamento do algoritmo NLMS convencional. 
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Simulações demonstram uma maior precisão do novo 
modelo, quando comparado com os demais modelos 
encontrados na literatura para o algoritmo NLMS. 
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1. INTRODUCTION 

Adaptive filtering techniques are widely employed in real 
life applications such as modeling, equalization, active 
noise control and echo cancellation [1-3]. Stochastic 
gradient based algorithms have proven to be both robust 
and easy to implement for real-time control and estimation 
applications. 

The Least Mean Square (LMS) is the most popular 
adaptive algorithm due to its robustness and low 
computational complexity [4]. This simplicity, however, 
comes at the price of a large dependence of the optimal 
value of its design parameter (the adaptation step-size µ) on 
the statistics of the input signal. For a fixed-step-size 
implementation, changes in the input power lead to 
performance losses and frequently make the algorithm 
ineffective. 

Among the various LMS family members, the 
normalized algorithms are attractive because of their 
capability of tuning the step-size to the input power. This 
property renders the algorithms less sensitive to input power 
variations at the cost of an increased computational 
complexity as well as higher misadjustment. 

The Normalized-LMS (NLMS) algorithm, also known as 
the projection algorithm [5-7], is the most used normalized 
algorithm due to its simple form and good performance. 
The NLMS weight update follows the direction of the input 
vector x(n), and the step-size is normalized by the squared 
norm of the input vector, which works as an instantaneous 
estimate of the input power. The squared norm can be 
computed recursively, increasing the algorithm’s cost by 
only two multiplications and one division per iteration, 
when compared to the LMS algorithm. In applications 
where a large number of coefficients is necessary, the 
advantages of using the NLMS algorithm easily overcome 
the extra implementation cost [7]. Typical applications are 
active noise control and echo cancellation. 

Practical implementations of adaptive filters in fixed or 
floating-point digital signal processors require the 
adjustment of the analog to digital converters’ (ADC’s) 
dynamic range to cover the entire range of the input signal 
[8]. Hence, small amplitude signals are quantized to zero 
when their magnitudes are smaller than the least significant 
level of the ADC. Moreover, some applications can be 
characterized by periods of absence of signal, such as in 
speech communications. When such situations occur, the 
normalizing factor of the NLMS algorithm can become too 
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small (even zero), which is undesirable. To avoid divisions 
by zero or overflows, a small positive constant (ε) is 
frequently added to the normalizing factor of the NLMS 
algorithm, yielding a step-size of the form 
µ(n) = β / [ ε + xT(n)⋅x(n) ]. This modification characterizes 
the ε-NLMS algorithm, a generalization of the conventional 
NLMS algorithm. 

The ε-NLMS algorithm was analyzed by Bershad [9] for 
white Gaussian inputs. He concluded that, under this input 
signal condition, the algorithm has neither a behavior which 
is independent of input data power nor a performance which 
is significantly better than the LMS algorithm. Later on, 
Douglas and Meng [10] studied normalized data 
nonlinearities for LMS adaptation in order to improve the 
algorithm’s performance. The proposed generalized 
algorithm had an equation similar to the LMS, but with the 
updating term multiplied by a general scalar memoryless 
nonlinear function of xT(n)x(n). As a result, they derived an 
optimum form of nonlinearity for independent input data. 
This nonlinearity is optimum for independent input data 
samples with any even probability density function. The 
resulting adaptive algorithm is equivalent to the ε-NLMS 
with β = 1. In this algorithm, the convergence performance 
is controlled by the parameter ε. The authors of [10] have 
shown that up to 3.6 dB improvement can be obtained over 
the LMS steady state mean square error (MSE) performance 
when using this algorithm. However, [10] did not provide 
any analysis for the correlated Gaussian input case. In [11], 
the fast affine projection algorithm was studied for hands-
free telephone applications as a generalization of the ε-
NLMS algorithm. The factor ε was again used to control the 
performance of the adaptive filter. Recently, a generalized 
normalized gradient descent adaptive algorithm was 
proposed [12]. Improved stability and faster convergence 
characteristics were obtained in [12] by a continuous 
change of the regularization parameter ε. These results 
revived the interest in the ε-NLMS, now with ε being more 
than just a regularization constant. 

This work presents a statistical analysis of the ε-NLMS 
algorithm for correlated Gaussian input signals. To the 
authors’ best knowledge, there is no analytical model 
available in the literature for this case. The new analysis 
does not require any numerical procedure to determine the 
model parameters. For the special case of ε = 0, the derived 
expressions become a new model for the popular NLMS 
algorithm. This new NLMS model provides a better 
prediction of the algorithm’s behavior than other models 
available in the literature [6,7]. 

Deterministic recursive equations are derived for the 
mean weight and MSE behaviors using the independence 
assumption [13] and the averaging principle [14]. Assuming 
algorithm’s convergence, a closed form expression is 
derived for the steady state MSE misadjustment as a limit of 
the recursive model. Simulations are provided to verify the 
validity of the analytical results. 

2. THE ε-NLMS UPDATE EQUATION 

 Consider the system identification problem 
depicted in Fig. 1, where 

 ( ) ( ) ( ) ( ) ( )T Te n n z n n n= + −ow x w x  (1) 
 
is the error signal, w(n) = [ wo

0 wo
1 … wo

N-1 ]T is the 
unknown impulse response, z(n) is a stationary, white, zero-
mean Gaussian measurement noise with variance rz and 
uncorrelated with any other signal. w(n) = [ w0(n) w1(n) … 
wN-1(n) ]T is the adaptive weight vector. Vectors wo and 
w(n) are considered to have the same dimension. Different 
dimensions can be accommodated by zero-padding the 
shorter response. The input signal x(n) is stationary, zero-
mean and Gaussian with variance r0, and x(n) = [ x(n) x(n-
1) … x(n-N+1) ]T is the observed data vector. 

The update equation of the ε-NLMS is given by [9]: 
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In (2), β is the fixed step-size and ε is a small positive 

constant, usually termed regularization constant. For ε = 0 
the algorithm becomes the popular NLMS algorithm [7]. 
The choice of β = 1 leads to the optimal normalized data 
vector nonlinearity [10]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Block diagram of the system analyzed. 

3. MEAN WEIGHT BEHAVIOR 

The following analysis assumes that the effects of the 
statistical dependence between x(n) and w(n) on the 
algorithm’s behavior can be neglected. This corresponds to 
the use of the well-known independence assumption [13]. 
Defining the weight error vector v(n) = w(n) - wo, using (1) 
in (2) and taking the expected value yields: 
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where it has been considered that E{x(n)⋅z(n)} = 0, since 
z(n) is zero-mean and independent of x(n). 

Each element of the expectation within the square 
brackets in (3) has a numerator given by x(n-i)⋅x(n-j) and a 
denominator given by 1 2

0
( )N

k
x n kε −

=
+ −∑ . For large values 

of N these two random variables can be assumed weakly 
correlated since x(n-i) and x(n-j) affect only two of the N 
terms in xT(n)x(n). For ergodic x(n), this assumption is 
equivalent to apply the averaging principle [14], as 
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1 2
0

( )N

k
x n k−

=
−∑  tends to be slowly time-varying when 

compared to x(n-i)x(n-j) for large N. As the samples of x(n) 
become more correlated in time, the assumption becomes 
less valid. Extensive simulation results obtained by the 
authors have shown that this assumption holds very well for 
N as small as 30 and for a wide range of input eigenvalue 
spreads. Thus, the expected value within brackets can be 
approximated by 
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The first expected value on the r.h.s. of (4) is difficult to 

evaluate because of the constant ε, which is not always very 
small compared to xT(n)x(n) [10, 11]. To proceed with the 
analysis, the following approximation is used: 
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The expected value in the numerator of (5) is the input 

signal correlation matrix. The expectation in the 
denominator is the trace of the same correlation matrix. 
Thus, (5) becomes [15]: 
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with Rxx = E{x(n)xT(n)}. Using (6) in (3) leads to the 
following analytical model for the mean weight error 
vector’s behavior: 
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For ε = 0, (7) becomes the NLMS model derived in [7, 

Eq. (9)]. 

4. MSE BEHAVIOR 

Squaring (1) and taking the expected value leads to the 
well-known expression for the MSE: 
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where K(n) = E{v(n)vT(n)} is the weight-error correlation 
matrix and tr{A} is the trace of the matrix A. Post-
multiplying (2) by its transpose, taking the expected value 

and neglecting the statistical dependence of x(n) and v(n) 
[13] leads to the recursive expression: 
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Since the joint probability density of w(n) and x(n) is not 

known, the third expectation in (9) can be only 
approximated. The following approximation is used: 
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The expectation in the denominator of (10) can be 

evaluated as: 
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where rj-i = E{x(n-i)x(n-j)} is the element (i,j) of Rxx. Using 
the Gaussian moment factoring theorem [4, pp.318]: 
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Substituting (6), (10), (11) and (12) in (9) leads to the 

following recursion for the behavior of K(n): 
 

 

( ) ( )

( ) ( )

( ){ } ( ){ }
0

2

1 1
2 2 2 2

0 0
0 0

1

    

 2  
    

2 2

z

N N

j i
i j

n n

n n
Nr

r tr n n

Nr N r r

β
ε

β

ε ε
− −

−
= =

+ =

− +  +

 + + +
+ + + ∑∑

xx xx

xx xx

xx

K K

K R R K

R K I R K
R

 (13) 

 



José C.M. Bermudez and Márcio H. Costa 
A Statistical Analysis of the ε-NLMS and NLMS Algorithms for Correlated Gaussian Signals 
 

4  

For the white Gaussian input case (Rxx = r0⋅I), (8) and 
(13) reduce to the following set of equations: 
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where TK(n)=tr{K(n)} is a scalar. 

5. MISADJUSTMENT 

Assuming algorithm’s convergence as n→∞, one can use 
limn→∞ K(n+1) = limn→∞ K(n) in (13). Then, taking the trace 
of (13) leads, after algebraic manipulations, to: 
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Determination of an analytical expression for the 

misadjustment from (15) requires further approximations. It 
can be verified that: 
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For N large and for x(n) white (Rxx = r0⋅I), the l.h.s. of 

(16) is N/2 times the r.h.s. For colored inputs, (16) has been 
verified by the authors through extensive simulations. 
Proceeding with the general correlated case and using (16), 
(15) reduces to: 
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Using (17) in (8) the following approximated expression 

is determined for the misadjustment: 
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6. SIMULATIONS 

This section presents six simulation results to verify the 
accuracy of the analytical models given by (8), (13) and 
(18): 

 
Example 1 – Low correlation input signal, medium 

number of taps and small step-size: In this example x(n) is 
Gaussian with r0 = 1, and generated by a second order 
autoregressive (AR) filter defined by the recursion 
x(n) = − a1⋅x(n-1) − a2⋅x(n-2) + b0⋅u(n) with b0 = 1, 
a1 = −0.3, a2 = 0.4 and ru = 0.8 (input power to the model). 
The eigenvalue spread (λmax/λmin) of Rxx is equal to 8.37, 
yielding a low correlation input signal. The noise power is 
rz = 10-6. The components of wo correspond to a 50-tap 
Hanning window, normalized for woTwo = 1. The 
parameters of the algorithm are β = 0.1, ε = 1 and w(0) = 0. 

The results of Monte Carlo simulations (1000 runs) and 
the theoretical prediction of the algorithm’s behavior are 
shown in Fig. 2. Note that the analytical model predicts 
very well the steady-state algorithm’s behavior. In the 
adaptation phase, the model is conservative and thus useful 
for design purposes.  
 

Example 2 – High correlation input signal, medium 
number of taps and small step-size: All parameters are the 
same as in Example 1, except for a2 = 0.8 and ru = 0.35, 
resulting in an eigenvalue spread of 96.53. Fig. 3 presents 
Monte Carlo Simulation (1000 runs) and the theoretical 
result.  

Comparing Figs. 2 and 3 it is possible to verify the 
model’s robustness to variations in the eigenvalue spread of 
the input correlation matrix (from 8.37 to 96.53). The 
model’s accuracy in the adaptation phase is comparable to 
the accuracy of the existing models for the NLMS 
algorithm with white inputs (see, for instance, Fig. 5). The 
mismatches between theory and simulation in Examples 1 
and 2 are largely due to the use of the independence 
assumption. Thus, the model gets more accurate for smaller 
step sizes [13]. 
 

Example 3 – High correlation input signals, reduced 
number of coefficients and large step-size: In this example 
x(n) Gaussian with r0 = 1 and λmax/λmin equal to 82.98 (same 
AR model as in Example 2); rz = 10-6. The unknown system 
response wo has 30 taps (normalized Hanning window). The 
algorithm’s parameters are β = 0.9, ε = 0.1 and w(0) = 0. 
This example uses a set of parameters that is not favorable 
to the model. The number of taps is close to the limit where 
the assumptions used to derive (5) are no longer valid. Also, 
large step-size and eigenvalue spread make the 
independence assumption less valid. 
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The Monte Carlo results for 1000 runs and the theoretical 
prediction are shown in Fig. 4. The steady state theoretical 
prediction is still very good. The accuracy of the model is 
reduced during transient (as compared to Examples 1 and 
2), but the model remains conservative and useful for 
design purposes. 
 

 
Figure 2. MSE, example 1. (a) simulations; (b) theoretical 
model. 

 
Figure 3. MSE, example 2. (a) simulations; (b) theoretical 
model. 

 
Figure 4. MSE, example 3. (a) simulations; (b) theoretical 
model. 

Example 4 – Comparison with Bershad’s model [9] for 
white signals: In this example x(n) is white and Gaussian 
with r0 = 1, rz = 10-6 and wo has 10 coefficients (normalized 
Hanning window). The algorithm’s parameters are β = 1, 
ε = 1 and w(0) = 0. The simulation results (1000 runs) are 
shown in Fig. 5. Also shown in this figure are the 
theoretical predictions using the model presented in [9] and 
the new model. Note that both models present good 
agreement with the algorithm’s behavior (even for a small 
number of taps). 
 

Example 5 – Comparison with Slock’s [6] and Costa’s 
model [7] for the NLMS case (ε = 0) with small number of 
taps and correlated signals: In this example x(n) is 
Gaussian with r0 = 1. The input eigenvalue spread λmax/λmin 
is equal to 68.4 (same AR model as in Example 2). The 
noise power is rz = 10-6. The plant wo has 20 coefficients 
(normalized Hanning window). The algorithm’s parameters 
are β = 1, ε = 0 (NLMS) and w(0) = 0. Simulation results 
are shown in Fig. 6. The Monte Carlo simulation 
corresponds to the average of 1000 runs. The theoretical 
results are presented using three different analytical models. 
Curve (b) was obtained using the model proposed in [6], 
curve (c) corresponds to the model proposed in [7] and 
curve (d) was obtained using the new model. These plots 
clearly show the superiority of the new model. 
Nevertheless, note that this example is for a small number 
of taps and a large step-size, conditions that are not 
favorable to the new model. 
 

Example 6 – Comparison with Slock’s [6] and Costa’s 
model [7] for the NLMS case (ε = 0) with large number of 
taps and correlated signals: The input signal is Gaussian 
with r0 = 1. The input eigenvalue spread λmax/λmin is equal 
to 68.4 (same AR model as in Example 1, except for 
a2 = 0.7497). The noise power is rz = 10-6. The plant wo has 
200 coefficients (normalized Hanning window). The 
algorithm’s parameters are β = 0.1, ε = 0 (NLMS) and 
w(0) = 0. The Monte Carlo simulation corresponds to the 
average of 1000 runs. The results are presented in Fig. 7. 

 

 
Figure 5. MSE, example 4. (a) simulations; (b) Bershad’s 
model [9]; (c) the new model. 
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Figure 6. MSE, example 5. (a) simulations; (b) Slock’s 
model [6]; (c) Costa’s model [7]; (d) the new model. 

 
Figure 7. MSE, example 6. (a) simulations; (b) Slock’s 
model [6]; (c) Costa’s model [7]; (d) the new model. 

 
Table 1 compares the steady-state MSE misadjustment 

predictions obtained by using (8) and (13), and using the 
closed form approximation (18). It can be verified that (18) 
produces very good estimates of the steady-state results 
obtained from running (8) and (13). Both results show a 
very good agreement with simulations for most design 
purposes. 

 

N β ε χ Simulation Eqs.(8)-(13) Eq.(18)

5 1 1 21 -57.6 -58.2 -58.6 

10 1 0.01 45 -56.4 -57.8 -58.3 

15 0.1 15 59 -59.9 -59.9 -59.9 

50 1 0.01 97 -57 -57.3 -57.6 

Table 1. Comparisons between steady-state MSE 
predictions and simulations (dBs units). N is the number of 
taps of the plant (normalized Hanning window), χ is the 
eigenvalue spread, rz = 10-6. 

7. CONCLUSIONS 

This work presented a statistical analysis of the ε-NLMS 
algorithm for Gaussian input signals. Deterministic 
recursive expressions were derived for the mean weight and 
MSE behaviors for slow learning and a large number of 
adaptive weights. The new model does not require any 
numerical procedure and is valid for white or correlated 
Gaussian input signals. For ε = 0 the result becomes an 
analytical model for the behavior of the NLMS algorithm. 
The new model is more accurate than those previously 
proposed in the literature. An approximated closed 
expression was derived for the steady-state MSE 
misadjustment. Monte Carlo simulations show very good 
agreement between model predictions and simulation 
results in steady state and fair to good agreement during the 
acquisition phase, even for large step-sizes and small 
number of coefficients. 
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