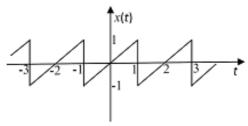

EEL7052-Sistemas Lineares

Recuperação - Semestre 2015/1 - 13/07/2015

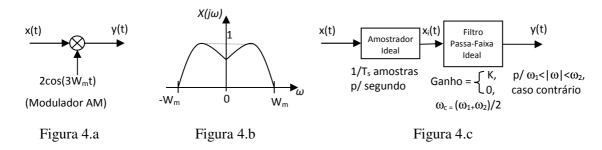
Departamento de Engenharia Elétrica - UFSC

Profs. Bartolomeu Uchôa Filho e Márcio Holsbach Costa

1 – Considere o sistema discreto representado pelo circuito abaixo, em que os valores sobre as setas representam ganhos multiplicativos e correspondem a parâmetros do sistema, x(n) e y(n) são os sinais de entrada e saída, respectivamente, e w(n) e suas versões deslocadas, w(n-1) e w(n-2), são sinais auxiliares, definidos apenas para facilitar a análise do circuito. Os círculos representam somadores e q-1 um atraso de uma amostra. 1.a) Encontre a função de transferência H(z) seguindo os seguintes passos: 1.a.a) Encontre uma expressão para w(n) e outra para y(n) em função dos parâmetros e dos outros sinais; 1.a.b) Obtenha as transformadas z W(z) e Y(z); 1.a.c) Encontre agora H(z); 1.b) Especifique uma expressão matemática (em função dos parâmetros do sistema) para a faixa de valores de z para os quais H(z) existe (ou seja, determine a sua região de convergência). 1.c) Encontre a equação de diferenças do sistema; 1.d) Especifique uma expressão matemática (em função dos parâmetros do sistema) que represente uma condição para que o sistema seja estável.


2 – Um sistema contínuo LIT e causal é descrito pela equação diferencial

$$\frac{d^{2}y(t)}{dt^{2}} + 4\frac{dy(t)}{dt} = 5y(t) + \frac{dx(t)}{dt} + 2x(t)$$


e possui condições iniciais $y(0^-) = 1$ e dy(t)/dt = 1 em $t = 0^-$.

- a) Encontre a função de transferência, H(s), do sistema. Plote os pólos e os zeros e indique a região de convergência.
- b) Indique (com justificativa) se o sistema é estável.
- c) Encontre o sinal de saída y(t) quando o sinal de entrada for $x(t) = \delta(t) 3e^{-2t}u(t)$.
- d) Especifique a resposta à entrada zero e a resposta ao estado zero.
- e) Especifique a resposta forçada e a resposta natural.

3 – O sinal periódico x(t) mostrado abaixo é a entrada do sistema com resposta ao impulso $h(t) = e^{-3t}u(t)$. Determine uma expressão para o sinal de saída y(t).

4 – Um modulador AM é mostrado na Figura 4.a (onde o círculo representa um multiplicador), na qual W_m é a frequência máxima (a partir da qual o espectro de frequências tem valor zero) do sinal modulador x(t), e $\omega_p = 3W_m$ é a frequência da portadora. O espectro de x(t) é mostrado na Figura 4.b. Esboce o espectro de frequências do sinal modulado y(t). Considere agora o método alternativo mostrado na Figura 4.c para gerar o mesmo sinal y(t). Por este método, você dispõe de um amostrador ideal que amostra o sinal x(t) a uma taxa $1/T_s$ amostras por segundo, e um filtro passa-faixa ideal com ganho K na faixa de passagem, com frequências de corte ω_1 e ω_2 e frequência central ω_c . Indique os valores de T_s , K, ω_1 , ω_2 e ω_c de tal modo que o sinal de saída y(t) na Figura 4.c seja igual ao sinal y(t) da Figura 4.a. Todas as respostas deverão ser acompanhadas de justificativa ou demonstração.

FORMULÁRIO

Transformadas z e propriedades

X(n)	X(z)
δ(n-m)	z ^{-m}
u(n)	z/(z-1)
n.u(n)	z/(z-1) ²
n².u(n)	z(z+1)/(z-1) ³
γ ⁿ u(n)	z/z-γ
γ ⁿ⁻¹ u(n-1)	1/z-γ
n.γ ⁿ u(n)	γ z/(z-γ) ²
$ \gamma ^n \cos(\beta n).u(n)$	$z(z- \gamma \cos(\beta))$.
	z^2 -(2 γ cos(β))z+ γ ²
γ ⁿ sen(βn).u(n)	$z y sen(\beta)$.
	z^2 -(2 γ cos(β))z+ γ ²

Domínio do tempo	Domínio de z
x(n)	∞
	$X(z)=\sum x(n) z^{-n}$
	n=-∞
x(n-m)	z-m X(z)
∞	
$x_1(n)^* x_2(n) = \sum x_1(m)x_2(n-m)$	$X_1(z).X_2(z)$
m=-∞	
Transf. z unilateral:	
x(n)	∞
	$X(z)=\sum x(n) z^{-n}$
	n=0
x(n-1)	$z^{-1} X(z) + x(-1)$
x(n-2)	$z^{-2} X(z) + z^{-1}x(-1) + x(-2)$

Pares de transformadas de Fourier

x(t)	Χ(jω)	
δ(t)	1	
1	2πδ(ω)	
u(t)	$\pi\delta(\omega)$ + 1/(j ω)	
$cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$	
sen(ω ₀ t)	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
ret(t/τ)	τ.sinc(ωτ/2)	
(W/π) .sinc(Wt)	ret(ω/2W)	
e ^{-at} u(t), a>0	1/(a+jω)	
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0),$	$\omega_0 = \frac{2\pi}{T}$

Propriedades da transformada de Fourier

	•
x(t)	Χ(jω)
y(t)	Υ(jω)
a.x(t)+b.y(t)	a.X(jω)+ b.Y(jω)
x(t-τ)	e ^{-jωτ} .X(jω)
e ^{jWt} .x(t)	X(j(ω-W))
x*(t)	Χ*(-jω)
x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
x(t)*y(t)	Χ(jω).Υ(jω)
x(t).y(t)	(1/2π).X(jω) _* Y(jω)
$\frac{d}{dt}x(t)$	jω.X(jω)
$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$

Transformadas de Laplace

f(t)	F(s)
$\delta(t)$	1
u(t)	1/s
t.u(t)	1/s ²
e ^{-at} u(t)	1/s+a, RC: Re{s} ≥ -a
-e ^{-at} u(-t)	1/s+a, RC: Re{s} ≤ -a
sen(bt)u(t)	b/s ² +b ²
cos(bt)u(t)	s/s ² +b ²
$r.e^{-at}\cos(bt+\theta).u(t)$	$0.5re^{j\theta}$ $0.5re^{-j\theta}$
	s+a-jb $+s+a+jb$

Domínio do tempo	Domínio de s
f(t)	F(s)
df(t)	$sF(s) - f(0^{-})$
dt	
$d^2f(t)$	$s^2F(s) - sf(0^-) - df(0^-)$
dt ²	dt
e ^{-at} f(t)	F(s+a)
$f_1(t)*f_2(t)$	$F_1(s).F_2(s)$
f(t-a)u(t-a), a≥0	e ^{-as} F(s)
f(at)	1/a. F(s/a)
t.f(t)	<u>-dF(s)</u>
	ds